Search results for "Mass Matrix"
showing 10 items of 49 documents
Circumstantial Evidence for Rotating Mass Matrix from Fermion Mass and Mixing Data
2002
It is shown that existing data on the mixing between up and down fermion states and on the hierarchical mass ratios between fermion generations, as far as can be so analysed at present, are all consistent with the two phenomena being both consequences of a mass matrix rotating in generation space with changing energy scale. As a result, the rotating mass matrix can be traced over some 14 orders of magnitude in energy from the mass scale of the $t$-quark at 175 GeV to below that of the atmospheric neutrino at 0.05 eV.
Improvement of matrix solutions of generalized nonlinear wave equation
2005
Four classes of nonlinear wave equations are joined in one generalized nonlinear wave equation. A theorem is proved that the whole series of matrix functions satisfy the generalized wave equation. A justification of rotational properties of matrix solutions is given and a mathematical model of the ring vortex around the acute edge is proposed using of matrix solutions.
A measurement of the phases of the CP-violating amplitudes in K0→2π decays and a test of CPT invariance
1990
Abstract The phases of the CP-violating amplitudes in K0→π+π− and K0→2π0 decays, φ+−=46.9°±2.2° and φ00=47.1°±2.8°, have been measured in the same experiment, and a direct comparison gives the phase difference φ00−φ+−=0.2°±2.9°. This result leads to an upper limit on possible CPT violation in the K0 mass matrix, of |(m K 0 −m K 0 )/m K 0 | −18 at the 95% confidence level and is the most stringent test of the equality of particle and antiparticle masses.
Nonperturbative renormalization and O(a) -improvement of the nonsinglet vector current with Nf=2+1 Wilson fermions and tree-level Symanzik improved g…
2019
In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice QCD, the electromagnetic current plays a central role. Using a Wilson action with $\mathrm{O}(a)$ improvement in QCD with ${N}_{\mathrm{f}}$ flavors, a counterterm must be added to the vector current in order for its on-shell matrix elements to be $\mathrm{O}(a)$ improved. In addition, the local vector current, which has support on one lattice site, must be renormalized. At $\mathrm{O}(a)$, the breaking of the $\mathrm{SU}({N}_{\mathrm{f}})$ symmetry by the quark mass matrix leads to a mixing between the local currents of different quark flavors. We present a nonperturbative calculation…
Fritzsch neutrino mass matrix fromS3symmetry
2010
We present an extension of the Standard Model (SM) based on the discrete flavor symmetry S3 which gives a neutrino mass matrix with two-zero texture of Fritzsch-type and nearly diagonal charged lepton mass matrix. The model is compatible with the normal hierarchy only and predicts the sine squared of the reactor angle to be 0.01 at the best fit values of solar and atmospheric parameters and maximal leptonic CP violation.
Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology
2009
We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as mu -> e gamma and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.
Neutrino masses from operator mixing
2002
We show that in theories that reduce, at the Fermi scale, to an extension of the standard model with two doublets, there can be additional dimension five operators giving rise to neutrino masses. In particular there exists a singlet operator which can not generate neutrino masses at tree level but generates them through operator mixing. Under the assumption that only this operator appears at tree level we calculate the neutrino mass matrix. It has the Zee mass matrix structure and leads naturally to bimaximal mixing. However, the maximal mixing prediction for solar neutrinos is very sharp even when higher order corrections are considered. To allow for deviations from maximal mixing a fine t…
Predictive flavor symmetries of the neutrino mass matrix.
2007
Here we propose an $A_4$ flavour symmetry model which implies a lower bound on the neutrinoless double beta decay rate, corresponding to an effective mass parameter $M_{ee} \gsim 0.03$ eV, and a direct correlation between the expected magnitude of CP violation in neutrino oscillations and the value of $\sin^2\theta_{13}$, as well as a nearly maximal CP phase $\delta$.
Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC
2007
Neutrino masses may be generated by the VEV of an $SU(2)_L$ Higgs triplet. We assume that the doubly charged component of such a triplet has a mass in the range of several 100 GeV, such that it is accessible at LHC. Its decay into like-sign leptons provides a clean experimental signature, which allows for a direct test of the neutrino mass matrix. By exploring the branching ratios of this decay into leptons of various flavours, we show that within this model the type of the neutrino mass spectrum (normal, inverted or quasi-degenerate) might actually be resolved at the LHC. Furthermore, we show that within the Higgs triplet model for neutrino mass the decays of the doubly charged scalar into…
Meson resonances, large N_c and chiral symmetry
2003
14 páginas, 2 tablas.-- arXiv:hep-ph/0305311v1